Homotopy properties of Hamiltonian group actions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motivic Homotopy Theory of Group Scheme Actions

We define an unstable equivariant motivic homotopy category for an algebraic group over a Noetherian base scheme. We show that equivariant algebraic K-theory is representable in the resulting homotopy category. Additionally, we establish homotopical purity and blow-up theorems for finite abelian groups.

متن کامل

Some Cyclic Group Actions on Homotopy Spheres

In [4J Orlik defined a free cyclic group action on a homotopy sphere constructed as a Brieskorn manifold and proved the following theorem: THEOREM. Every odd-dimensional homotopy sphere that bounds a para-llelizable manifold admits a free Zp-action for each prime p. On the other hand, it was shown ([3J) that there exists a free Zp-action on a 2n-1 dimensional homotopy sphere so that its orbit s...

متن کامل

Topological properties of Hamiltonian circle actions

We study conditions under which a circle action on a symplectic manifold gives rise to an essential (i.e. noncontractible) loop in the group Ham(M,ω) of Hamiltonian symplectomorphisms. A fixed point x of an S-action is called simple if the weights of the linearized action on TxM are 0 or ±1. We show that a circle subgroup that has a simple fixed point x and that is inessential in a semisimple L...

متن کامل

Nilpotent Orbits, Normality, and Hamiltonian Group Actions

Let M be a G-covering of a nilpotent orbit in 0 where G isa complex semisimple Lie group and g = Lie(G). We prove that under Poisson bracket the space R[2] of homogeneous functions on M of degree 2 is the unique maximal semisimple Lie subalgebra of R = R{M) containing g . The action of g' ~ R[2] exponentiates to an action of the corresponding Lie group G' on a G'-cover M' of a nilpotent orbit i...

متن کامل

Decomposability of Homotopy Lens Spaces and Free Cyclic Group Actions on Homotopy Spheres

Let p be a linear Zn action on C and let p also denote the induced Z„ action on S2p~l x D2q, D2p x S2q~l and S2p~l x S2q~l " 1m_1 where p = [m/2] and q = m — p. A free differentiable Zn action (£ , ju) on a homotopy sphere is p-decomposable if there is an equivariant diffeomorphism of (S2p~l x S2q~l, p) such that (S2m_1, ju) is equivalent to (£(*), ¿(*)) where S(*) = S2p_1 x D2q U^, D2p x S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2004

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2005.9.121